Dust Collection and Combustible Dust for Secondary Wood Operations: Fundamentals and Safety

Handout Document:

Seminar WE 29, July 19, 2017

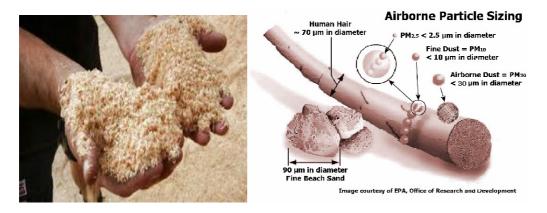
Robert Williamson, Nederman LLC

College of Woodworking Knowledge Education Program

Objectives:

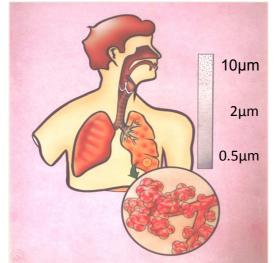
Upon attending the session, participants will be able to:

- 1) Understand the health and economic benefits of installing and maintaining a properly designed dust collection system.
- 2) Survey their dust collection requirements and size the capacity of their dust collection system.
- 3) Identify the main components of a dust collection system and differentiate between the different types of filtration and source capture technologies.


Section #1: Benefits of Effective Dust Collection

Defining the Dust Issue:

- 1. Chips, shavings, coarse and fine dust are generated during the manufacturing process cutting, routing, sanding, drilling etc.
- 2. Using compressed air to clean machines, the airborne dust will migrate a further distance from the original point of creation.
- 3. Processing any type of dried wood product will create fine dusts. Sanding operations and cutting and routing any type of composite materials will create higher volumes of fine dust.


Enemy #1: Dust

Benefits of Properly Designed System:

Improve Health

Chronic exposure to wood dust causes respiratory issues for workers and some wood species are likely to cause cancer.

Exposure Limits:

PEL \ OSHA	TLV \ ACGIH
5 mg / m3	1 (& 0.5) mg /m3
Respirable Part	(Western Red Cedar)
	Listed Carcinogen

Increase Productivity and Product Quality:

Improve cut quality and product finish by eliminating chip and dust marks on components. Visibility will increase with improvement in air quality.

Reduce Safety Risk – Fire \ Explosion and Work Space Injuries:

The conditions are in place with the addition of a competent igniter to start a fire and or an explosion in the work place. A significant event could lead to injuries to personnel and property loss, as well as the possible claims and litigation associated with this type of incident .

Deadly Combination = Combustible Dust x Ignition Source x Oxygen x Containment x Dispersion

Retain Skilled Employees:

The average cost to train or replace worker is 35% to 45% of an employee's salary.

Comply with Regulations:

OSHA is implementing a National Emphasis Program on Combustible Dust Safety that includes random inspections of wood processing facilities. Based on published data, six citations per inspection are issued with an average penalty of \$1,300.00.

Excerpt from OSHA Combustible Dust Poster:

Dust Control Measures

- The dust-containing systems (ducts and dust collectors) are designed in a manner (i.e., no leaking) that fugitive dusts are not allowed to accumulate in the work area.
- The facility has a housekeeping program with regular cleaning frequencies established for floors and horizontal surfaces, such as ducts, pipes, hoods, ledges, and beams, to minimize dust accumulations within operating areas of the facility.
- The working surfaces are designed in a manner to minimize dust accumulation and facilitate cleaning.

Ignition Control Measures

- Electrically-powered cleaning devices such as vacuum cleaners, and electrical equipment are approved for the hazard classification for Class II locations.
- The facility has an ignition control program, such as grounding and bonding and other methods, for dissipating any electrostatic charge that could be generated while transporting the dust through the ductwork.
- The facility has a Hot Work permit program.
- Areas where smoking is prohibited are posted with "No Smoking" signs.
- Duct systems, dust collectors, and dust-producing machinery are bonded and grounded to minimize accumulation of static electrical charge.
- The facility selects and uses industrial trucks that are approved for the combustible dust locations.

Prevention Measures

- The facility has separator devices to remove foreign materials capable of igniting combustible dusts.
- MSDSs for the chemicals which could become combustible dust under normal operations are available to employees.
- Employees are trained on the explosion hazards of combustible dusts.

Protection Measures

- The facility has an emergency action plan.
- Dust collectors are not located inside of buildings. (Some exceptions)
- Rooms, buildings, or other enclosures (dust collectors) have explosion relief venting distributed over the exterior wall of buildings and enclosures.
- Explosion venting is directed to a safe location away from employees.
- The facility has isolation devices to prevent deflagration propagation between pieces of equipment connected by ductwork.
- The dust collector systems have spark detection and explosion/ deflagration suppression systems.
- Emergency exit routes are maintained properly.

Lower Cost by Extending Tool \ Blade Life:

Without correct airflow, tool life is shortened due to heat build up and additional wear from unremoved waste and dust.

Address the Dust Issue: Source Capture Method

The best way to minimize dust problems is to avoid spreading the dust in the facility. This is done by capturing the dust as close to the source as possible.

Section #2: Important Considerations in System Design:

Machine Air Flow Requirements: CFM = Cubic Feet Per Minute

Standard Woodworking Machines:

Rule of Thumb: Port Velocity = 4,500 FPM

Total Air Volume Requirement = Dust Port Area x Velocity (4,500 FPM)

Machine Port Diameter	Air Flow CFM @ 4,500 FPM	Machine Port Diameter	Air Flow CFM @ 4,500 FPM	Machine Port Diameter	Air Flow CFM @ 4,500 FPM
3"	220	6"	885	9"	1,990
4"	395	7"	1,205	10"	2,455
5"	615	8"	1,570	12"	3,535

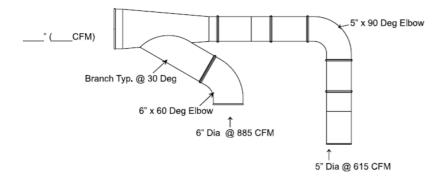
Multiple Ports: Example

Machine with 1-4" & 1-6" Total Requirement = 395 + 885 = 1,280 CFM

Speciality Machines:

High Speed Panel Processing: Port Velocity: 5,200 FPM Wide Belt Sander: 1,000 – 1,200 CFM / Head Moulder: 1,000–1,200 CFM / Head

Rule of Thumb – Check with manufacturer to obtain specification on individual makes and models.



Pipe Sizing and Specification:

Step by Step Design Process:

- 1. Determine minimum duct velocity: Dry Wood Dust and Chips = 4,000 FPM
- 2. Determine pick up diameters/CFM (see Air Volume table from catalogue)
- 3. Calculate total CFM
- 4. Layout Main Trunk Line
- 5. Calculate total system static pressure
- 6. Select Fan to meet system requirements.

Size the Pipe Exercise:

EXAMPLE: Always work from your machines back toward the filter. Suppose that you have a 5" drop that rises and runs back to join with a 6" drop as sketched above. What size branch will you need?

1,500 CFM @ 4,500											
FPM: Select a 8" AIR VOLUME IN DUCTS IN CUBIC FEET PER MINUTE (CFM)											
Diameter Pipe											
	\sim	VELOCITY IN FEET PER MINUTE (FPM)									
DUCT	Ø 2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000
3	100	125	150	170	155	220	245	270	295	320	345
4	175	220	260	305	350	395	440	485	525	570	615
5	275	340	410	475	545	615	680	750	820	885	955
6	395	490	590	685	785	885	980	1080	1180	1275	1375
	535	670	800	935	1070	1205	1335	1470	1605	1735	1870
8	700	875	1050	1220	1395	1570	1745	1920	2095	2270	2445
9	885	1105	1325	1545	1765	1990	2210	2430	2650	2870	3090
10	1090	1365	1635	1910	2180	2455	2725	3000	3270	3545	3820
11	1320	1650	1980	2310	2640	2970	3300	3630	3960	4290	4620
12	1570	1965	2355	2750	3140	3535	3925	4320	4710	5105	5500
13	1850	2300	2770	3225	3685	4150	4610	5070	5530	5990	6450
14	2140	2675	3205	3740	4275	4810	5345	5880	6415	6950	7485
15	2450	3070	3680	4300	4900	5520	6130	6750	7360	7970	8590
16	2790	3490	4190	4885	5585	6285	6980	7680	8380	9075	9775
17	3150	3940	4730	5515	6300	7090	7880	8670	9450	10240	11030
18	3535	4420	5300	6185	7070	7950	8835	9720	10600	11485	12370
20	4365	5455	6545	7635	8725	9815	10910	12000	13090	14180	15270
22	5280	6600	7920	9240	10560	11880	13200	14520	15840	17160	18480
24	6285	7855	9425	10995	12656	14135	15710	17280	18850	20420	21995
26	7370	9210	11055	12900	14740	16580	18420	20270	22 1 10	23950	25800
28	8550	10685	12820	14960	17100	19230	2131	23500	25650	27780	29920
30	9800	12260	14700	17170	19625	22080	2453 ⁰	26990	29440	31890	34350
32	11160	13950	16750	19541	22330	25120	27910	30700	33490	26280	39070
34	12600	15755	18905	22055	25210	28360	31,010	34660	37810	40965	44115
36	14130	17665	21195	24730	28260	31800	35325	38860	42390	45925	49455
38	15745	19680	23615	27550	31490	35425	39360	43295	47230	51170	55100
40	17445	21800	26170	30530	34890	39250	43610	47975	52330	56700	61055

Dust Collector Technology:

Dust Collector Selection Criteria:

Air-to-Cloth Ratio: The amount of air or process gas entering the baghouse divided by the sq. ft of cloth in the baghouse.

Example:

(bag diameter in inches x pi x bag length in inches) Bag Diameter (D) = 4.875in. (0.41ft.) Bag Length (L) = 96in. (8.00ft.) Area / Bag (A) = (Pi x D x L) = 10.2ft² # of Bags in Baghouse = 200 Total Filter Area Baghouse = 2,042ft² Assume the Baghouse is Handling = 10,000 CFM Air to Cloth Ratio = (ACFM / Total Filter Area) = 4.90ft/min = 4.9:1

Positive Pressure Baghouse: A system with a fan located prior to a baghouse on the dirty side, pushing air through the system.

Negative Pressure Baghouse: A system where the fan is located after the baghouse on the clean air side, pulling air through the system.

Dust Collector Selection Criteria:

- 1. More effective filter area = higher filtration efficiency and stable pressure drop.
- 2. Lower RPM Fan = reduced noise emissions.
- 3. Meets NFPA standards for enclosureless dust collector.
- 4. Weight and type of media will affect bag life.

Enclosureless Dust Collector Features:

- ✓ Dust on inside of filter media clean air to surrounding area
- ✓ Filter media is not enclosed
- \checkmark No shaker or pressure pulse while fan is on
- ✓ Filter media is under positive pressure
- ✓ Dust not removed continuously or mechanically

Centrifugal Fan Selection Criteria:

Curved Backward Inclined Clean Air Application

Energy Efficiency

Straight Backward Inclined Dirty Air \ Chip Application

Straight Radial Blade Dirty Air \ Transport Waste

Compliance with NFPA 664 :

Purpose of Standard:

Establish minimum requirements for fire and explosion prevention and protection.

Scope:

- Industrial, commercial or institutional facilities.
- Company processes wood or is a manufacturer of wood products: Using wood or other cellulosic fiber as a substitute for or additive to wood fiber.
- Process creates wood chips, particles or dust.

Limitations:

Minimum size of facility covered by NFPA 664 Standard:

Woodworking operation area more than 5,000 ft^{2.} Or

Dust collection requirements > 1,500 CFM (8" duct).

Authority Having Jurisdiction (AHJ):

An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

Chapter 8: Processes, Operations and Special Systems

Dust Collector Location: Acceptable Alternatives

- 1. Outside of building
- 2. Indoors with no fire or deflagration hazard
- 3. Indoors with only fire hazard with proper protection
- 4. Indoors with listed deflagration suppression system
- 5. Indoors with deflagration relief vents with relief pipe extended to safe area outside building
- 6. Indoors with deflagration relief vent vented through listed flame-quenching devices
- 7. Indoors for enclosureless dust collector

Dust Collector: Indoor Location (#7)

Meets the Enclosureless DC criteria & the following:

- ✓ Pickup from wood processing machinery no metal or fumes
- ✓ Not used for sanders, molders or abrasive planers having mechanical feeds through machines
- ✓ Maximum 5,000 CFM capacity
- ✓ Fan motor is TEFC
- ✓ Dust is removed daily or more frequently if necessary
- Located 20 ft. from any means of egress or area routinely occupied by personnel
 Multiple collectors in same room separated by at least 20 ft.

Dust Collector: Outdoor Location (#1) with Return Air *Clean air can be returned if:*

✓ System efficiency > 99.9 at 10 micron

- ✓ No gasses or hybrid mixtures
- ✓ If a fire hazard:

Systems < than 5,000 CFM

Listed spark detection and extinguishing system upstream of dust collector and downstream of last entry point

Systems > than 5,000 CFM

Spark detection system as above

High speed abort gate activated by spark detector and sufficiently fast to divert burning material

Abort gate must be reset at the gate either mechanically or electrically No remote reset

Dust Collector: Isolation from Workspace \ Critical Process Equipment

Prevent propagation of fire and deflagration both upstream and downstream into occupied area or other critical process equipment.

Exception: Enclosureless Dust Collector

Passive Device: Explosion Isolation Flap for Dirty Supply Pipe

Active Device: High Speed Abort for Clean Return Air – (Activated by Spark Detection)

Section #3: Real World Scenario

TOP TEN CONSIDERSATIONS WHEN SPECIFYING A SYSTEM:

1 What is the total air volume or do you have your machinery port sizes?

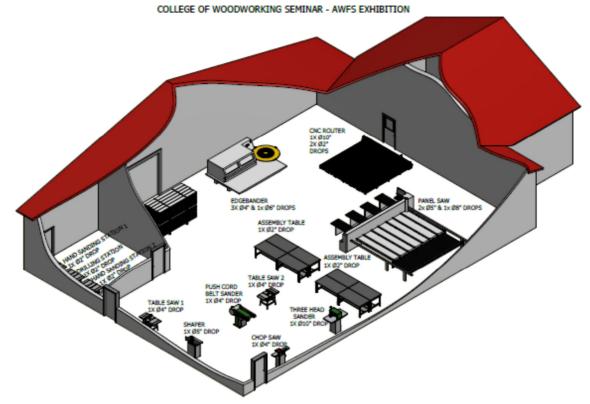
What is the CFM requirement of the system?

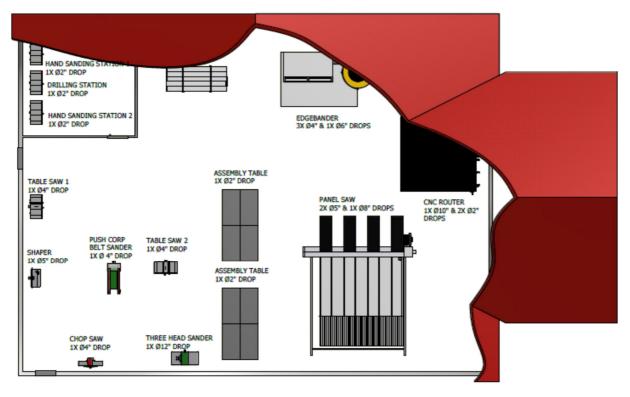
- 2 What kind of materials are you working with and how much dust do you think you'll produce? Hardwood, MDF, particle board / 100 gallons/hr, 100 yards/week.
- 3 What kind of machines or operation are we extracting from and do you have list of those machines? *Beam Saw, CNCs, Grinders, etc.*
- 4 Where do you want to put the collector? Inside, outside, how far will it be from the furthest machine?

5 Do you plan to expand your operation? Adding CFM in the future?

6 How long will the collector be in use every day ? Single shift, 24/7,

how many breaks?


- 7 What voltage do you have in the facility? 460 V / 3 PH / 60 Hz
- 8 Do you pay to heat or air condition the facility? Are we returning the air?
- 9 How do you want to collect the dust? Plastic bags, barrels, dumpster?


10 Do you have specialty equipment – moulder, CNC router, wood waste grinder.

Calculation of the Dust Collection Requirements: Scenario #2

WS #	Workstation Name	Hood Description	Connection Velocity	SCFM @ Conn Velocity
1	Table Saw 1	Machine Connection	4,500	393
2	Chop Saw	Back Table Hood	4,500	393
3	Table Saw 2	Machine Connection	4,500	393
4	Belt Sander	Machine Connection	4,500	614
5	Shaper	Machine Connection	4,500	614
6	Three Head Sander	Manifold	4,500	3,534
7	Edgebander	Machine Connection	5,200	2,382
8	CNC - Point to Point	Machine Connection	6,500	3,545
9	Panel Saw	Machine Connection	5,200	3,233
10			4,500	0
11			4,500	0
		TOTALS	4,809	15,100
		Add Future Capacity	0	0
		100% CAPACITY TOTAL	4,809	15,100

Example Facility:

Estimate Fan Energy Consumption:

	Annual Energy Cost of Fan Operation (16 Hrs Per Day x 5 Days Per Week x 50 Weeks Per Year)											
	\$ Per KWH 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20											
	25	\$4,474	\$5,965	\$7,456	\$8,947	\$10,438	\$11,930	\$13,421	\$14,912			
	50	\$8,947	\$11,930	\$14,912	\$17,894	\$20,877	\$23,859	\$26,842	\$29,824			
НР	100	\$17,894	\$23,859	\$29,824	\$35,789	\$41,754	\$47,718	\$53,683	\$59,648			
c	200	\$35,789	\$47,718	\$59,648	\$71,578	\$83,507	\$95,437	\$107,366	\$119,296			
Fa	300	\$53,683	\$71,578	\$89,472	\$107,366	\$125,261	\$143,155	\$161,050	\$178,944			
	500	\$89,472	\$119,296	\$149,120	\$178,944	\$208,768	\$238,592	\$268,416	\$298,240			
	1000	\$178,944	\$238,592	\$298,240	\$357,888	\$417,536	\$477,184	\$536,832	\$596,480			
	Calculated at 100% Load											

Payback of Returning Clean Air to Building:

Make Up A	ir Costs f	or Heati	ng Air:			
		Heating	1 Shift \ Hours	2 Shifts \ Hours	3 Shifts \ Hours	Return Air
Facility Location:	Air Volume:	Degree Days	2,000	4,000	6,000	Investment
	SCFM		Make Up	Air Costs: Annua	l Cost USD	
St Louis, MO	10,000	6023	\$7,838	\$15,677	\$23,515	\$20,000
Pittsburgh, PA	10,000	5968	\$7,767	\$15,534	\$23,300	\$20,000
Seattle, WA	10,000	4611	\$6,001	\$12,002	\$18,002	\$20,000
Omaha, NE	10,000	6413	\$8,346	\$16,692	\$25,038	\$20,000
Los Angeles, CA	10,000	1458	\$1,897	\$3,795	\$5,692	\$20,000
Discharge Air Temp	erature:	65	Fahrenheit Degi	rees		
Available Heat Per	Unit Fuel:	106500	BTU Per Unit			
Energy Cost Per Un	it:	2.25	USD Per Gallon			
Return Air Cost:	Return Air Cost:		USD Per CFM			
Simple Payl	back for	Return A	ent:			
		Heating	1 Shift \ Hours	2 Shifts \ Hours	3 Shifts \ Hours	Return Air
Facility Location:	Air Volume:	Degree Days	2,000	4,000	6,000	Investment
	SCFM		Sin	nple Payback - Ye	ars	
St Louis, MO	10,000	6023	2.55	1.28	0.85	\$20,000

Pipe Sizing and Layout:

FIVE TAKE AWAYS FROM TODAY'S PRESENTATION:

- 1. New Paradigm : Dust Collection is essential to a high performing and profitable woodworking facility.
- 2. Best way to address the Dust Issue is at the source.
- 3. When looking at different options, make sure you are comparing apples to apples. The lowest price up front may have a significantly higher cost of ownership over the lifespan of the system.
- 4. Get to know your AHJs they will be critical in the design process and ongoing compliance with regulations.
- 5. Knowledge is power. Take this information and put it to use in your plant.

Resource References:

- 1.) **National Fire Protection Association** is a non-profit organization that develops, publishes, and disseminates consensus codes and standards intended to minimize the possibility and effects of fire and other risks.
- 2.) <u>NFPA 664: Standard for the Prevention of Fires and Explosions in Wood Processing and Woodworking Facilities, 2017 Edition.</u>
- 3.) **OSHA** is implementing a National Emphasis Program on Combustible Dust Safety that includes random inspections of wood processing facilities.

Book and Documents:

- a. <u>NFPA 664: Standard for the Prevention of Fires and Explosions in Wood Processing and</u> <u>Woodworking Facilities, 2017 Edition.</u>
- b. <u>A Guide for Protecting Worker from Woodworking Hazards, Small Business Management</u> Series, US Department of Labor, OSHA 3157 – 1999
- c. Industrial Ventilation: A Manual of Recommended Practice, 27th Edition

Speaker Bio:

Robert Williamson is the North American Sales Director of Nederman LLC. Having worked in the air pollution control industry for over 20 years, Rob is well versed in the successful planning and execution of industrial filtration projects. In addition to his BSME and PMP certification, Rob holds an MBA from Wake Forest University. His projects and expertise include; fabric filters, centrifugal separators, pipe systems, energy management controls and explosion and fire safety systems. His current work involves assisting clients in meeting regulations on combustible dusts and lowering the costs of ownership of air pollution control systems.

Nederman

Nederman is a world leader in the design, manufacture, installation and service of industrial air pollution control equipment. Nederman currently has locations in the U.S., Brazil, China, Denmark, Finland, France, Germany, Poland, Russia, Sweden, Thailand, Ukraine and the United Kingdom.

Contact Information: **Robert Williamson** 4404-A Chesapeake Drive, Charlotte , NC 28216 Phone: 336.821.0823 Email: rob.williamson@nederman.com