

Healthy UV Curing on Wood

Jim Raymont EIT Instrument Markets

July 20, 2017

Preventative Medicine

"An ounce of prevention is worth a pound of cure"

"You have a rare condition called 'good health'. Frankly, I'm not sure how to treat it."

> Physical, Lab Tests, History, Lifestyle Changes, Medicine, Communication, Common Sense

Preventative (UV) Maintenance

"An ounce of preventative maintenance is worth......"

00:17

00:18

Process Window, Lab Tests, Process History, Maintenance, Communication, Common Sense

Similarities Between the Medical and UV Worlds

Medical

- Medical History
- Visual Examination
- Diagnosis
- Natural Causes
- Sudden
- Abuse
- Malpractice

<u>UV</u>

- Job History or Job Log
- Visual Examination
- Diagnosis
- Natural Causes
 - $\circ~$ Lamp output decays over time
 - o Materials have a shelf life
- Sudden
 - o Something breaks
 - o Changes to settings
- Operator Error
 - o Lack of maintenance
 - Changed/Wrong Settings
 - $\circ~$ Tinkering with formulas

Check List of Desired Coating Properties

- **Abrasion Resistance**
- Scratch Resistance
- **Chemical Resistance**
- Hardness
- U Weatherability
- Non-Yellowing
- **Flexibility**

Tensile Strength

Gloss

Coating Viscosity

Film Thickness

- Ability to Over Coat
- Sandability
- TBD

What properties are formulation driven?

What properties are process/UV source driven?

Wood Line Characteristics

- Multiple Lamps
- Multiple Bulb Types: Mercury, Mercury-Gallium, LED
- Varying Lamp Output
 - o Station to Station
 - o Across the Width of Lamp
- Uniformity of Equipment in a Facility or Company?
- Environment
 - o Dust, Dirt, Particles
 - o Reflector Cleanliness
- Variable Production Speeds

Rules of UV: Margaritaville Rule

Rule #1A: Blame the Formulator

Rule #1B: Blame the Equipment Supplier

The UV Process-Analogy

Cake: Bake at 350°F for 30 minutes

Oven Temperature (°F) is similar to Irradiance (Watts/cm²)

Bake Time (Minutes or seconds) is similar to Energy Density (Joules/cm²)

Not Specified: Oven Type

Changing the Cake Process Window

• 350° X 30 = 10,500

Equal Degree Minute Options

- 700°F for 15 minutes?
- 175°F for 60 minutes?

What if the cake mix only gave you the time?

Speaking the Same Terminology

Irradiance (Intensity)

- Expressed in watts or milliWatts per square centimeter (W/cm² or mW/cm²)
- Total <u>radiant power</u> of (all) wavelengths passing from all <u>incident</u> directions onto an infinitesimally small area (cm²)
- Depth of cure, penetration through pigments and opaque colors, adhesion to the substrate

Energy Density (Dose)

- Expressed in Joules (J/cm²) or milliJoules (mJ/cm²) per square centimeter
- Incorporates time as part of the measurement
- One watt for One second = One Joule
- Area under the irradiance curve
- Often the only UV exposure guide number supplied

Speaking the Same Terminology

Time

Impacts To UV Irradiance & Energy Density

- Line speed
- Age of the lamp
- Lamp output settings
- Distance from the lamp to the coating
- The condition of lamp reflectors
- Darkening of lamp electrodes

Natural Aging

...and so do (opened) coatings.

Bulbs: Buy on Value vs. Price

Courtesy Efsen Engineering

Bulbs: Buy on Value vs. Price

THERE IS ALWAYS SOMEONE...

... WHO WILL DO IT CHEAPER!

Watch purchasing staff getting 'specials'

Un-Natural Aging

Using Absolute Instruments

Standard Unit

- Want a "number"
 - Match a specification
 - Troubleshoot
 - Optimize a process
 - Compare lines
 - Communicate data

Profiling Radiometers

- The irradiance as a function of time
- Irradiance profiles useful to:
 - View system over time
 - View lamp focus (Gloss)
 - Determine lamp type
 - Analyze multi-lamp systems
 - Joules/Watt from each bulb
- Targeted Maintenance Approach

Lamp Performance-Numbers

55" (140 cm) bulb

Irradiance mW/cm ²		Data collected 3/24/16			
Band	Left	Center	Right	Highest Delta	
UVA	797	983	635	35.4%	
UVB	713	888	573	35.5%	
UVC	200	257	167	35.0%	
UVV	612	757	492	35.0%	
Energy Density mJ/cm ²					
UVA	243	282	234	17.0%	
UVB	206	239	195	18.4%	
UVC	58	68	55	19.1%	
UVV	231	264	222	15.9%	

MARKETS

Lamp Performance- Visual

Aged Arc Lamp

- 440mW/cm² (Middle)
- 317 mW/cm² (End)

Inadequate Cooling Airflow

Multiple Lamps on Production Line

Lamps 1-3: Parabolic reflectorsLamp 8: Out of focusLamp 7 to Lamp 9: 173 vs. 440 mW/cm², 58 vs. 93 mJ/cm²

Changing the distance from the UV System to the substrate

- The effect of moving the UV housing away from the cure surface
- Substrate Height?

Process Variables-Reflectors

ULTRAVIOLET SPECTRUM

ULTRAVIOLET SPECTRUM

A CLEAN BULB AND REFLECTOR DELIVERS ALL THE UV SPECTRUM IN THE RANGES OF UVA, UVB, UVC AND UVV

A DIRTY BULB AND REFLECTOR DELIVERS VERY LITTLE OF THE UV SPECTRUM IN UVC & UVB, AND REDUCED AMOUNTS OF UVA AND UVV

A multi-channel radiometer allows you to compare short & long wave ratios and identify changes UVC: UVA

UVC: UVV

Please Overnight a Radiometer to Us?

Too often, a doctor visit or UV measurement happens only when things go wrong.

"I am loose and tight

in all the

wrong places"

Process Window

- The range in which a process will work with the desired results
 - Adhesion, hardness, flexibility, gloss, texture, stain or scratch resistance, chemical rub, cross hatch, abrasion rub, color ID, registration
 - Often a compromise (Desired Coating Properties)
- Invest before production & confirm when things are working!
 - Starting guidelines from formulator?
 - Define your lower limits and document the readings
 - Increase line speed/decrease applied power until you undercure, note readings and cushion by 20%
 - Upper limits?
- Monitor your readings by job, hour, shift or day as required to maintain quality
- Establish your process window during the design/development phase and start monitoring from day one in production

Process Window

Normal Operating Window

Caution 20% Undercure Buffer Range

Stop!Undercure Limit

Over cure or over temperature?

Starting Point: Formulator Guidelines

Basic Formulator Specification

 2x Hg lamps 80 W/cm (electrical not UV) 5 meters/minute, forward feed

Improved Formulator Specification?

- Testing can define a process window
- Lab testing is less expensive than production testing or no process window

Variables:

- Line speed
- Lamp distance
- Lamp output
- Bulb Type
- Source Type
- Coating
- Instrument Type

Organize Your Data

For each UV lamp system

- Hour meter
- Indicated vs. actual process speed
- Power settings (WPI, Amps)
- Irradiance (W/cm²)
- Radiant Energy Density(J/cm²)
- Lamp matched to chemistry
- Focus/Reflector condition

Other things to consider

- Date/job number
- Operator signature
- Mesh count
- Formulation type
- Pass/fail on specific QC testscross hatch, rub, registration
- Maintenance log of system
- Radiometer type/bandwidths

Date	Line Speed Dwell Time UV System: North L Date FPM/RPM				North Line Lam	p: 2
	Ind.	Actual.	Power WPI	Hour Meter	Irradiance (W/cm²)	Energy Density (J/cm²)
8/17	25	22	400	780	0.859	1.45

Notes
UV System Line: Lamp Number: Equipment: Lamp Type: Power Setting: Line Speed/Exposure Time: Reflector Poistion: Product: Product Notes: Maintenance Notes:

Outside the Process Window

• Panic!!!!!!

- Rule 1A/1B: Blame the Formulator & the Equipment Supplier
- If you have a process window established, relax & breathe deep
- Gradual change towards caution area?
- Which way do you have to go?
- Perform simple routine system maintenance (measure, record, clean, repeat) for your type of equipment
- Adjust user controlled variables until you are back in your process window
- If simple maintenance does not work, look toward major or comprehensive maintenance
- Work and communicate with suppliers in good times and bad times

Get into "predict and perform preventative maintenance" routine vs. a "fix it when it breaks" routine

MARKETS

Wide variety of UV LED sources

- Multiple suppliers with wide level of expertise, support, finances
- Match source to your application & process

Images courtesy Baldwin, Dymax, Integration Technology, Excelitas & Phoseon Technology

UV LED Power Output vs. Wavelength

Using UVA to measure a 385 nm or 395 nm LED

LEDCure™ LED-R™ L395 Series

- 40 Watt Dynamic Range
- Display Plus Profiler Option
- L395: Total Measured Optics Response
- Additional L-Bands coming soon

MARKETS

LEDCure™ L395 Instrument Response

Total Measured Optics Response

LEDCure L395 Performance

Data collected at EIT February 9, 2017

LEDCure L395 Feedback

- A 395nm UV LED source was calibrated to 16W/cm² using the EIT L395.
- The UV LED source was then measured with another NIST traceable radiometer.
- The two radiometers matched to within 4% at different irradiance levels.

INSTRUMENT MARKETS

Data Courtesy of Phoseon Technology

- Energy Density (Dose) measurements were taken at a speed of 20mm/sec (1.2m/min) and compared to the calculated value based on the short axis spatial response.
- The EIT measurement differed from the calculated value by less than 1%.
- The other NIST traceable radiometer differed from the calculated value by more than 13%.

Data Courtesy of Phoseon Technology

LEDCure L395 Feedback

- Measurements at different irradiance settings were made with the EIT L395 radiometer, and compared to the expected values.
- The L395's linearity across a 3:1 dynamic range is excellent.

INSTRUMENT MARKETS

Data Courtesy of Phoseon Technology

LEDCure L395 Performance

LEDCure vs National Standard

Working Distance (mm)	Primary Standard: Integrating Sphere (W/cm ²)	LEDCure L395 (W/cm²)	Difference
5	9.01	9.23	2.4%
10	7.74	7.74	0.0 %
15	6.66	6.63	- 0.5%
20	5.74	5.83	1.6%
25	5.04	5.08	0.8%

Data Courtesy Lumen Dynamics/Excelitas

Continuous On-Line UV Measurement

- 1.3 meter (51") wide wood processing LED line
- Multiple LED heads
- 52 individual sections over 1.3 meter (51") wide line

• Supplier requires contractor to confirm UV output at the start of each 8 hour shift

Continuous On-Line UV Measurement

- Rail placed under LED Array with Sensor
- Measure perpendicular to the conveyor direction

Photo courtesy Efsen Engineering

Continuous On-Line UV Measurement

-16%

Calibration & Service

• Radiometers work better when properly maintained

- Two recommended methods:
 - Lint/detergent free wipes or IPA with cotton swab
- Advantages and disadvantages to each method
- First do no harm
- Avoid shirt sleeve, shop towel, etc.
- Avoid 'dry' cleaning instrument
- You Tube video on cleaning

Prescription for Profit

- ✓ Establish a baseline.
- ✓ Establish a process window.
- ✓ Make measurements routinely.
- Measure consistently. Same location, speed, device
- ✓ Document test procedures
- ✓ Label & mark equipment
- \checkmark Use the right radiometer
- ✓ Calibrate all of your tools
- ✓ Communicate

Jim Raymont EIT Instrument Markets 703-478-0700 jraymont@eit.com www.eit.com

309 Kelly's Ford Plaza SE, Leesburg, VA 20175

	_ @
and the second s	C1 11

INSTRUMENT MARKETS

